PHYSICAL / INORGANIC **CHEMISTRY**

Total Marks: 47

Max. Time: 52 min.

Topic: Chemical Kinetics

Type of Questions

M.M., Min.

Single choice Objective ('-1' negative marking) Q.1 to Q.9 Subjective Questions ('-1' negative marking) Q.10 to Q.14

(3 marks 3 min.) (4 marks 5 min.)

[27, 27] [20, 25]

For a 1st order reaction (gaseous) (cont. V, T) 1.

 $a A \longrightarrow (b-1) B + 1 C$

(with b > a), the pressure of the system rose by $50\left(\frac{b}{a}-1\right)$ % in a time of

10 min. The half life of the reaction is therefore.

- (A) 10 min
- (B) 20 min
- (C) 30 min
- (D) 40 min

2. Two first order reaction have half-lives in the ratio 8 : 1. Calculate the ratio of time intervals t_a : t_a. The time

 t_1 and t_2 are the time period for $\left(\frac{1}{4}\right)^{tn}$ completion of 1st reaction and $\left(\frac{3}{4}\right)^{tn}$ 2nd completion rxn repectively.

- (A) 1: 0.301
- (B) 0.125: 0.602
- (C) 1: 0.62
- (D) none of these

3. Under the same reaction conditions, initial concentration of 1.386 mol dm⁻³ of a substance becomes half in

40 seconds and 20 seconds through first order and zero order kinetics, respectively. Ratio $\left(\frac{k_1}{k_0}\right)$ of the rate constant for first order (k,) and zero order (k,) of the reaction is.

- (A) 0.5 mol-1 dm3
- (B) 1.0 mol dm⁻³
- (C) 1.5 mol dm⁻³
- (D) 2.0 mol⁻¹ dm³

For a first order reaction, the ratio of time for the completion of 99.9% and half of the reaction is 4.

- (A) 8
- (B) 10
- (C) 9
- (D) 12

For a first order reaction, nA \rightarrow B whose concentration vs time curve is as shown 5. in the figure. If half life for the reaction is 24 minutes . Find out the value of n.

- (A) 1
- (B) 2
- (C)3
- (D) 4

Number of natural life times (T_{au}) required for a first-order reaction to achieve 99.9% level of completion is: 6.

- (C) 9.2
- (D) 0.105

7. Consider the plots for the types of reaction $nA \rightarrow B + C$

These plots respectively correspond to the reaction orders:

- (A) 0, 2, 1
- (B) 0, 1, 2
- (C) 1, 1, 2,
- (D) 1, 0, 2

8. Reaction A + B \rightarrow C + D follows rate law, r = k[A]^{1/2} [B]^{1/2} starting with 1 M of A and B each. What is the time taken for concentration of A become 0.1 M?

Given $k = 2.303 \times 10^{-2} \text{ sec}^{-1}$.

- (A) 10 sec
- (B) 100 sec
- (C) 1000 sec
- (D) 434 sec
- 9. At high temperature (504°C) dimethyl ether decomposes as per the reaction

 $(CH_3)_2O(g) \longrightarrow CH_4(g) + H_2(g) + CO(g)$

- time (sec.) : p_{total} (mm) :
- 0
- 400 1200

560

- 312
- 412
- 0 ∞ 935

Determine the half life of the reaction during this run. (In $\left(\frac{623}{523}\right)$ = 0.175, In $\left(\frac{623}{375}\right)$ = 0.5076)

- (A) 1311 sec
- (B) 1411 sec
- (C) 1511 sec
- (D) 1611 sec
- 10. A reaction between A and B is represented stoichiometrically by $A + B \rightarrow C$. Observations on the rate of this reaction are obtained in three separate experiments as follows:

	initial concentrations			final concentration	
	$[A]_0$, M	$[B]_0$, M	duration of experiment Δt , hr	$[A]_f$, M	
(1)	0.1000	1.0	0.5	0.0975	
(2)	0.1000	2.0	0.5	0.0900	
(3)	0.0500	1.0	2.0	0.0450	

What is the order of the reaction with respect to each reactant and what is the value of the rate constant?

11. The gas phase decomposition of NOBr is second-order in [NOBr], with $k = 0.810 \text{ M}^{-1} \text{ s}^{-1}$ at 10°C. We start with $4.00 \times 10^{-3} \text{ M NOBr}$. in a flask at 10°C. How many seconds does it take to use up $1.50 \times 10^{-3} \text{ M NOBr}$?

$$2NOBr(g) \longrightarrow 2NO(g) + Br_2(g)$$

Time	0	Т	8
Partial pressure of A	P _o	P_{t}	_

13. Let there be a first order reaction, A ——> B + C. Let us assume all three are gases. We are required to calculate the value of rate constant based on the following data

Time	0	t	∞
Total pressure	P _o	P,	_

Calculate the expression of rate constant.

14. $A(g) \longrightarrow B(g) + C(g)$

Time	0	t	∞
Total pressure of B + C	0	P_{t}	P _∞

Calculate the expression of rate constant.

Answer Kev

DPP No. # 50

1.

(A) **2.** (C)

(B)

(C)

5.

(B)

7. (D)

(B)

(A)

(D)

10.

Rate = $k [A]^1 [B]^2$, $k = 5 \times 10^{-2} M^{-2} hr^{-1}$ 11. t = 92.6 s.

12. $k = \frac{1}{t} \ln \left(\frac{P_0}{P_t} \right)$ **13.** $k = \frac{1}{t} \ln \left(\frac{P_0}{2P_0 - P_t} \right)$ **14.** $k = \frac{1}{t} \ln \left(\frac{P_\infty}{P_\infty - P_t} \right)$

PHYSICAL / INORGANIC CHEMISTRY

DPP No. # 50

1.

t=0

t=10min

a' – x

 $\frac{(b-1)}{a'}x$ $\frac{x}{a}\left[(a'-x)+\frac{(b-1)x}{a}+\frac{x}{a}\right] \propto P_0 + P_0 \frac{50\left(\frac{b}{a}-1\right)}{100}$

 $\left[a'-x+\frac{b}{a}x\right]_{\infty}P_{0}\left[1+\frac{1}{2}\left(\frac{b}{a}-1\right)\right]$

 $\left[a'+x\left(\frac{b}{a}-1\right)\right] \propto P_0 + \frac{P_0}{2}\left(\frac{b}{a}-1\right)$

$$\Rightarrow x \propto \frac{P_0}{2} \, . \qquad \Rightarrow \qquad x \propto \frac{a'}{2} \, .$$

half life = 10 minute.

2. (C)
$$t_1 = \frac{(t_{1/2})_1}{0.693} \ln \left(\frac{1}{1 - (1/4)} \right)$$

 $t_2 = \frac{(t_{1/2})_2}{0.693} \ln \left(\frac{1}{1 - 3/4} \right)$
 $\frac{t_1}{t_2} = \frac{8}{1} \times \frac{\ln(4/3)}{\ln(4)} = 1 : 0.62.$

3. For Ist order reaction

$$k_1 = \frac{\ell n2}{t_{1/2}} = \frac{0.693}{40} \text{ second}^{-1}$$

$$\Rightarrow \frac{k_1}{k_0} = \frac{0.693}{1.386} = 0.5$$

4.
$$t = \frac{2.303}{k} \log \left(\frac{100}{0.1} \right) = \frac{2.303}{k} \times 3$$

$$t = \frac{2.303 \times 3}{\frac{0.693}{t_{1/2}}} = \frac{2.303 \times 3 \times t_{1/2}}{0.693} \qquad (t_{1/2} = \frac{0.693}{k})$$

$$\Rightarrow \frac{t_{99.9\%}}{t_{1/2}} = \frac{2.303 \times 3}{0.693} = 10$$

$$\begin{array}{ccc}
\mathsf{nA} & \longrightarrow \mathsf{B} \\
\mathsf{a}
\end{array}$$

$$a-x$$
 $\frac{x}{n}$ $t_{\frac{1}{2}} = 24 \text{ min}$

For zero order reaction

 $k_0 = \frac{C_0}{2 t_{1/2}} = \frac{1.386}{2 \times 20}$

at t = 48
$$a-x = \frac{x}{n}$$

$$a = \frac{(1+n)x}{n}$$
; $\frac{na}{1+n} = x$

$$\frac{\ell n2}{24} = \frac{1}{48} \quad \ell n \frac{a}{a - \frac{na}{(1+n)}}$$

$$4 = \frac{a(1+n)}{a}$$

$$n = 3$$
.

6. We know,
$$k = \frac{2.303}{t} \log \frac{a}{(a-x)}$$

99.9% completion

a = 100

$$a - x = (100 - 99.90) = .10$$

Then
$$t = \frac{2.303}{k} \log \left(\frac{100}{.10} \right)$$

$$t = 2.303 \times 3 \times \left[\frac{1}{k}\right]$$
 ; $t = 6.9 \times t_{av}$

$$t = 6.9 \times t_{av}$$

7.
$$nA \longrightarrow B + C$$

$$\frac{-d[A]}{dt}$$
 α [A] (1st order)

$$[A]_t$$
 α t (zero order)

$$\frac{1}{[A]_t}$$
 α t (2nd order)

$$\Rightarrow \frac{dx}{dt} = k (1-x)^{1/2} (1-x)^{1/2}.$$

or
$$\frac{dx}{dt} = k (1 - x)$$
.

$$\Rightarrow \qquad t = \frac{1}{k} \ln \left(\frac{1}{1-x} \right); \qquad \qquad t = \quad \frac{2.303}{2.303 \times 10^{-2}} \log \left(\frac{1}{0.1} \right) = 100 \text{ sec.}$$

$$\mathsf{Kt} = \mathsf{In}\left(\frac{\mathsf{C_0}}{\mathsf{C_t}}\right) = \mathsf{In}\left(\frac{\mathsf{a}}{\mathsf{a} - \mathsf{x}}\right) \qquad \Rightarrow \qquad \mathsf{Kt} = \mathsf{In}\left(\frac{\mathsf{p_\infty} - \mathsf{p_0}}{\mathsf{p_\infty} - \mathsf{p_t}}\right)$$

(t = 400sec)
$$K_1 = \frac{1}{400} \ln \left(\frac{935 - 312}{935 - 412} \right) = \frac{1}{400} \ln \left(\frac{623}{523} \right) \sec^{-1} = 0.175 \times \frac{1}{400}$$

(t = 1200sec)
$$K_2 = \frac{1}{1200} \ln \left(\frac{935 - 312}{935 - 560} \right) = \frac{1}{1200} \ln \left(\frac{623}{375} \right) \sec^{-1} = 0.5076 \times \frac{1}{1200}$$

$$t_{\frac{1}{2}} = \frac{\ln 2}{\frac{k_1 + k_2}{2}} = \frac{2\ln 2}{(k_1 + k_2)} = \frac{1584 + 1638}{2} = 1611 \text{ sec.}$$

$$A + B \longrightarrow C$$

Rate =
$$-\frac{d[A]}{dt} = -\frac{d[B]}{dt} = \frac{d[C]}{dt}$$

Rate = K[A]^a [B]^b

$$R_1 = K [0.1]^a [1]^b$$
 = $5 \times 10^{-3} \text{ M hr}^{-1}$
 $R_2 = K [0.1]^a [2]^b$ = $20 \times 10^{-3} \text{ M hr}^{-1}$

$$\frac{R_1}{R_2} = \left[\frac{1}{2}\right]^b = \frac{1}{4}$$
 \Rightarrow $b = 2$

$$R_3 = K [0.05]^a [1]^2 = 2.5 \times 10^{-3} \text{ M hr}^{-1}$$

 $R_1 = K [0.1]^a [1]^2 = 5 \times 10^{-3} \text{ M hr}^{-1}$

$$\frac{R_3}{R_1} = \left[\frac{1}{2}\right]^a = \frac{1}{2} \qquad \Rightarrow \qquad a = 1$$

$$R_1 = K [0.1] [1]^2 = 5 \times 10^{-3} \text{ M hr}^{-1}$$

$$K = \frac{5 \times 10^{-3}}{0.1} = 5 \times 10^{-2} \,\mathrm{M}^{-2} \,\mathrm{hr}^{-1}$$

11.
$$[NOBr]_t = 4.00 \times 10^{-3} - 1.50 \times 10^{-3} = 2.50 \times 10^{-3}$$

$$k = \frac{1}{2t} \left[\frac{1}{[NOBr]_t} - \frac{1}{[NOBr]_0} \right]$$
 (due to cofficients of the reactant = 2)

$$0.810 = \frac{1}{2t} \left[\frac{1}{2.50 \times 10^{-3}} - \frac{1}{4.00 \times 10^{-3}} \right]$$

$$t = \frac{1}{2 \times 0.810} \left[\frac{(4.00 - 2.50) \times 10^{-3}}{2.50 \times 10^{-3} \times 4.00 \times 10^{-3}} \right]$$

t = 92.6 s.

12.
$$A \longrightarrow B + C$$

 $t=0$ a 0 0 $a \propto P_0$
 $t=t$ a-x x x $(a-x) \propto P_t$

$$Kt = In \left(\frac{a}{a - x} \right) \implies k = \frac{1}{t} In \left(\frac{P_0}{P_t} \right)$$

$$k = \frac{1}{t} \ln \left(\frac{P_0}{P_t} \right)$$

13.
$$A \longrightarrow B + C$$

 $t=0$ a 0 0 $a \propto P_0$
 $t=t$ a-x x x $(a+x) \propto P_t \Rightarrow x \propto (P_t - P_0)$

$$Kt = In \left(\frac{a}{a - x} \right) \implies$$

$$k = \frac{1}{t} \ln \left(\frac{P_0}{P_0 - (P_t - P_0)} \right)$$

$$\mathsf{K}\mathsf{t} = \mathsf{In} \bigg(\frac{\mathsf{a}}{\mathsf{a} - \mathsf{x}} \bigg) \quad \Rightarrow \qquad \mathsf{k} = \frac{1}{\mathsf{t}} \mathsf{In} \bigg(\frac{\mathsf{P}_0}{\mathsf{P}_0 - (\mathsf{P}_\mathsf{t} - \mathsf{P}_0)} \bigg) \qquad \Rightarrow \qquad \mathsf{k} = \frac{1}{\mathsf{t}} \mathsf{In} \bigg(\frac{\mathsf{P}_0}{2\mathsf{P}_0 - \mathsf{P}_\mathsf{t}} \bigg)$$

14.
$$A \longrightarrow B + C$$

 $t=0$ a 0 0

t=t a-x x
$$x 2x \propto P_t \Rightarrow x \propto \frac{P_t}{2}$$

$$t=\infty$$
 0 a a $2a \propto P_{\infty}$ \Rightarrow $a \propto \frac{P_{\infty}}{2}$

$$\Rightarrow$$

$$Kt = In \left(\frac{a}{a - x} \right)$$

$$\Rightarrow$$

$$\mathsf{K}\mathsf{t} = \mathsf{In}\bigg(\frac{\mathsf{a}}{\mathsf{a} - \mathsf{x}}\bigg) \qquad \qquad \Rightarrow \qquad \mathsf{k} = \frac{1}{\mathsf{t}} \mathsf{In}\bigg(\frac{\mathsf{P}_{\infty}}{\mathsf{P}_{\infty} - \mathsf{P}_{\mathsf{t}}}\bigg)$$